Search results for "Inter-subject variability"

showing 2 items of 2 documents

Functional Brain Segmentation Using Inter-Subject Correlation in fMRI

2016

The human brain continuously processes massive amounts of rich sensory information. To better understand such highly complex brain processes, modern neuroimaging studies are increasingly utilizing experimental setups that better mimic daily‐life situations. A new exploratory data‐analysis approach, functional segmentation inter‐subject correlation analysis (FuSeISC), was proposed to facilitate the analysis of functional magnetic resonance (fMRI) data sets collected in these experiments. The method provides a new type of functional segmentation of brain areas, not only characterizing areas that display similar processing across subjects but also areas in which processing across subjects is h…

Time FactorsComputer science0302 clinical medicinetoiminnallinen magneettikuvausImage Processing Computer-AssistedCluster AnalysisSegmentationResearch Articlesinter-subject variabilityBrain Mappingshared nearest-neighborgraphmedicine.diagnostic_test05 social sciencesBrainHuman brainMiddle AgedMagnetic Resonance Imagingmedicine.anatomical_structurefunctional segmentationGaussian mixture modelGraph (abstract data type)/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beinginter-subject correlationAlgorithmsAdultshared nearest-neighbor graphModels NeurologicalSensory system050105 experimental psychology03 medical and health sciencesYoung AdultNeuroimagingSDG 3 - Good Health and Well-beingmedicineHumans0501 psychology and cognitive sciencesComputer SimulationCluster analysishuman brainCommunicationbusiness.industryMagnetic resonance imagingPattern recognitionfunctional magnetic resonance imagingOxygenAffinity propagationnaturalistic stimulationArtificial intelligencebusiness030217 neurology & neurosurgery
researchProduct

Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition

2014

Canonical polyadic decomposition (CPD) may face a local optimal problem when analyzing multi-subject fMRI data with inter-subject variability. Beckmann and Smith proposed a tensor PICA approach that incorporated an independence constraint to the spatial modality by combining CPD with ICA, and alleviated the problem of inter-subject spatial map (SM) variability.This study extends tensor PICA to incorporate additional inter-subject time course (TC) variability and to connect CPD and ICA in a new way. Assuming multiple subjects share common TCs but with different time delays, we accommodate subject-dependent TC delays into the CP model based on the idea of shift-invariant CP (SCP). We use ICA …

Independent component analysis (ICA)Speech recognitionModels NeurologicalMotor ActivityNeuropsychological TestsInter-subject variabilityta3112TimeMulti-subject fMRI dataFingersHumansCanonical polyadic decomposition (CPD)Computer SimulationMotor activityInvariant (mathematics)ta217ta113Brain MappingShift-invariant CP (SCP)General NeuroscienceBrainMagnetic Resonance ImagingIndependent component analysisAuditory PerceptionTensor PICASpatial mapsPsychologyAlgorithmJournal of Neuroscience Methods
researchProduct